iten
Home » Accelerators and Facilities

Accelerators and Facilities

Beam Test Facility

Particle beams of various kinds – electrons, positrons, photons and neutrons – arrive at the BTF (Beam Test Facility) laboratory, directly derived from the electron beam of the DAΦNE Linac. The laboratory has the peculiarity of providing various types of beams: each has a variable number of constituent particles and energy, within the limits allowed by the properties of the primary beam of the Linac.

Read More »

DAFNE

DAΦNE is the collider currently in operation in Frascati. The accelerator consists of 2 rings approx. 100 m in length, in which high-intensity electron and positron beams circulate and intersect in two possible interaction points, one of which is currently in use and holds the experiment’s detector  KLOE-2. The total energy of the beams in the reference system of the centre of the mass is equal to 1.02 GeV, corresponding to the mass of Φ mesons which are produced at the rate of 300 per second. The first particle beams started circulating in DAΦNE in 1997.

Read More »

DAFNE Light

“To make the invisible visible”  This is the synchrotron light laboratory of the National Laboratory of Frascati. Synchrotron light is the radiation emitted by accelerated charged particles – in the case of DAΦNE, electrons – that travel at relativistic speeds. The radiation produced has high luminosity and wavelengths which extend, in a continuous manner, from infrared to X-rays, making it an ideal probe for studying physical systems with dimensions ranging from those of the atom to those of biological systems such as cells and tissues.

Read More »

SPARC_LAB

The SPARC_LAB laboratory was born as the integration of one last generation accelerator (SPARC) and one very powerful laser (FLAME). It hosts a Free Electron Laser (FEL) which observed a radiation coherent between 500 nm (Green) and 40 nm (UV). This radiation is produced injecting SPARC’s electron beam into a series of magnets with alternate polarity. The  SPARC FEL emits ultrashort pulses (lasting 0.1-1 pico-seconds).  This class of devices allows therefore the study of extremely rapid chemical reactions, relevant to biomedic research.

Read More »