The workshop on Muon Identification at LHCb will be held at the Frascati National Laboratory of INFN, in the B. Touschek Auditorium. The meeting will focus on the ongoing developments for maximising the performances on the Muon Identification, in the present phase and for LHCb upgrade. The goal is to gather consolidated experiences and new ideas from detector, trigger and software experts and to create a forum of discussion where to address the main challenges and the best solutions for the future. The agenda and the link to Vidyo are here https://indico.cern.ch/event/453712/
Read More »Tag Archives: Evento scientifico
The Cosmic Zoo: (sterile) neutrinos, axions and majorons after Planck
The nature of dark matter (DM) is one of the most puzzling open problems of cosmology and particle physics. Succesfull structure formation requires the thermal velocity of the DM particles to be small, i.e., the DM to be “cold” or “warm”, albeit a subdominant “hot” component could be present. Several candidates for the role of dark matter have been proposed: among them sterile neutrinos, axions (and axion-like particles) and majorons. These candidates could costitute the dominant cold/warm DM or provide a small hot component, in different regions of the respective parameter spaces. In my talk I will review present constraints on these candidates, also in light of the recent observations of the Planck satellite.
Read More »LHCb Italia Collaboration Meeting
A review of the analysis activities of the Italian groups and of the upgrade projects. To follow the meeting via Vidyo please click here https://indico.cern.ch/event/453722/
Read More »Nanoscience and Nanotechnology
The conference in 2015 is devoted to recent developments in nanoscience and its manifold technological applications. It consists of a number of tutorial/keynote lectures, as well as research talks presenting frontier nanoscience research developments and innovative nanotechnologies in the areas of biology, medicine, aerospace, optoelectronics, energy, materials and characterizations, low-dimensional nanostructures and devices.
Read More »A proposal for an ERC starting grant on Dark Sectors physics
In this proposal we aim at hunting for New Physics in the largely unexplored domain of Dark Sectors made of very weakly interacting particles with masses well below the electroweak scale and henceforth inaccessible to the LHC experiments.
Read More »Adjoint $SU(5)$ GUT model with $T_{7}$ flavor symmetry
We propose an adjoint $SU(5)$ GUT model with a $T_{7}$ family symmetry and an extra $Z_{2}\otimes Z_{2}^{\prime} \otimes Z_{3}\otimes Z_{4}\otimes Z_{12}$ discrete group, that successfully describes the prevailing Standard Model (SM) fermion mass and mixing pattern. The observed hierarchy of the charged fermion masses and the quark mixing angles arises from the $Z_{3}\otimes Z_{4}\otimes Z_{12}$ symmetry breaking, which occurs near to the GUT scale. The light active neutrino masses are generated by type I and type III seesaw mechanisms mediated by the fermionic $SU(5)$ singlet and the adjoint $\mathbf{24}$-plet. We construct several benchmark scenarios, which lead to $SU(5)$ gauge coupling unification and are compatible with the known phenomenological constraints originating from the lightness of neutrinos, proton decay, dark matter, etc. These scenarios contain TEV scale colored fields, which could give rise to a visible signal or be stringently constrained at the LHC.
Read More »Is quantum theory exact? The endeavor for the theory beyond standard quantum mechanics. Second Edition FQT2015
Secretary:Donatella Pierluigi
Read More »Light Cone 2015
LC2015 belongs to a conference series that started in 1991 under the supervision of the International Light Cone Advisory Committee and showed, year by year, to play a vital role in promoting the research towards a rigorous description of hadrons and nuclei, based on Light-Cone quantization methods. A strong relation with the experimental activity represents an important commitment of the Light-Cone community, with the ambition ''to assist in the development of crucial experimental tests at hadron facilities''. To emphasize this goal, the LC2015 venue will be the INFN National Laboratories in Frascati. In anticipation of opportunities afforded by new facilities, such as the 12 GeV upgrade of Th. Jefferson Natl. Lab, the FAIR facility at GSI, J-PARC, and other facilities around the globe, we aim to have a scientific program that could have a stimulating impact on the forefront research development of nuclear, hadron and particle physics. In particular, LC2015 will address the following topics: Hadron Physics in present and future facilities AdS/CFT – Theory and applications Few-body problems on the Light Cone Relativistic models of nuclear and hadronic structures Nonperturbative methods in quantum field theory Light-front field theory in QCD and QED Lattice Gauge Theories Conference Chairs Barbara Pasquini Dipartimento di Fisica Universita' di Pavia Via Bassi 6, 27100 Pavia Tel +390382987450 Fax +390382526938 Giovanni Salmè INFN Sezione di Roma Piazzale Aldo Moro 6, 00185 Roma Tel. +390649914872 Fax +39064454749 Participants
Read More »Flavour physics after LHC-1, what’s next?
In this talk I will review the status of flavour physics after the first run of the LHC and in particular I will discuss recent results from the LHCb experiment suggesting possible deviations from the SM predictions in semileptonic B-meson decays. I will also discuss possible interpretations of these anomalies in terms of New Physics.
Read More »Muon Particle Physics Programs at J-PARC – the COMET Experiment
The muon particle physics program at J-PARC will be mentioned, in particular charged lepton flavor violation with muons. Muon to electron conversion in a muonic atom is a process of charged lepton flavor violation (CLFV). The COMET experiment aims to search for muon to electron conversion at J-PARC with single-event sensitivity of 3×10^{-17}. which is about 10,000 improvement over the current limit. Recently the COMET experiment has taken a staged approach. COMET Phase-I. as the first phase, aims at a single-event sensitivity of 3×10^{-15} with a partial part of the full muon beam line and a Phase-I dedicated detector in the order of about 10^{6} sec. The funds for COMET Phase-I has been approved as the supplemental budget, and the construction has started in 2013. The physics run is expected to start in 2018-9. The COMET Phase-II will follow immediately. In this talk, I will describe physics motivation of CLFV, and the details of COMET Phase-I / Phase-II together with the current status.
Read More »