LC2015 belongs to a conference series that started in 1991 under the supervision of the International Light Cone Advisory Committee and showed, year by year, to play a vital role in promoting the research towards a rigorous description of hadrons and nuclei, based on Light-Cone quantization methods. A strong relation with the experimental activity represents an important commitment of the Light-Cone community, with the ambition ''to assist in the development of crucial experimental tests at hadron facilities''. To emphasize this goal, the LC2015 venue will be the INFN National Laboratories in Frascati. In anticipation of opportunities afforded by new facilities, such as the 12 GeV upgrade of Th. Jefferson Natl. Lab, the FAIR facility at GSI, J-PARC, and other facilities around the globe, we aim to have a scientific program that could have a stimulating impact on the forefront research development of nuclear, hadron and particle physics. In particular, LC2015 will address the following topics: Hadron Physics in present and future facilities AdS/CFT – Theory and applications Few-body problems on the Light Cone Relativistic models of nuclear and hadronic structures Nonperturbative methods in quantum field theory Light-front field theory in QCD and QED Lattice Gauge Theories Conference Chairs Barbara Pasquini Dipartimento di Fisica Universita' di Pavia Via Bassi 6, 27100 Pavia Tel +390382987450 Fax +390382526938 Giovanni Salmè INFN Sezione di Roma Piazzale Aldo Moro 6, 00185 Roma Tel. +390649914872 Fax +39064454749 Participants

Scopri di più »# Tag Archives: Evento scientifico

## Flavour physics after LHC-1, what’s next?

In this talk I will review the status of flavour physics after the first run of the LHC and in particular I will discuss recent results from the LHCb experiment suggesting possible deviations from the SM predictions in semileptonic B-meson decays. I will also discuss possible interpretations of these anomalies in terms of New Physics.

Scopri di più »## Muon Particle Physics Programs at J-PARC – the COMET Experiment

The muon particle physics program at J-PARC will be mentioned, in particular charged lepton flavor violation with muons. Muon to electron conversion in a muonic atom is a process of charged lepton flavor violation (CLFV). The COMET experiment aims to search for muon to electron conversion at J-PARC with single-event sensitivity of 3×10^{-17}. which is about 10,000 improvement over the current limit. Recently the COMET experiment has taken a staged approach. COMET Phase-I. as the first phase, aims at a single-event sensitivity of 3×10^{-15} with a partial part of the full muon beam line and a Phase-I dedicated detector in the order of about 10^{6} sec. The funds for COMET Phase-I has been approved as the supplemental budget, and the construction has started in 2013. The physics run is expected to start in 2018-9. The COMET Phase-II will follow immediately. In this talk, I will describe physics motivation of CLFV, and the details of COMET Phase-I / Phase-II together with the current status.

Scopri di più »## Accidental matter at the LHC

I discuss a class of weak-scale extensions of the Standard Model which is completely invisible to low-energy indirect probes. The typical signature of this scenario is the existence of new charged and/or colored states which are stable on the scale of high-energy particle detectors.

Scopri di più »## Thermodynamical aspects of high energy collisions

The Hagedron’s thermodynamical theory for high energy collisions has been recently extended by including Tsallis statistics. With this extension, a non-additive character was given to the so-called self-consistent thermodynamics leading to a power-law behaviour of the relevant distributions. In this talk a brief review of the extended Hagedorn’s theory will be given, and new results obtained with the nonextensive theory will be shown.

Scopri di più »## Axion-Higgs interplay in the two Higgs-doublet model

With the LHC experiments gathering more data, the exploration of the symmetry breaking sector of the Standard Model will gain renewed impetus. Likewise, it is important to search for dark matter candidates being a degree of freedom missing in the Standard Model. An invisible axion is an interesting candidate for dark matter. However trying to look for direct evidence of its existence at the LHC is hopeless as it is extremely weakly coupled. Therefore we have to resort to less direct ways to explore this sector by formulating consistent models that include the axion and deriving consequences that could be experimentally tested. In this talk we explored such consequences in the DFS model, an extension of the 2HDM with axion.

Scopri di più »## Latest results from the OPERA experiment

The OPERA experiment at the Gran Sasso underground laboratory has been designed to study the νμ→ντ oscillation in appearance mode in the CNGS neutrino beam. The efforts of the Collaboration to extend the analysed data sample, with five identified ντ candidates overall, and to improve the knowledge of the expected background allowed to establish the discovery of νμ→ντ oscillation with a significance larger than 5 σ. In this talk, the ντ data analysis will be discussed, with emphasis on the background constraints obtained by using dedicated data-driven control samples. The analysis of the present τ neutrino and electron neutrino samples in the framework of the 3+1 sterile model will be presented. Finally the analysis of the muon charge ratio in the cosmic ray sample will be covered.

Scopri di più »## Flavored Z_N symmetries

Discrete Z_N symmetries are a common “artifact” of beyond the standard model physics models. They provide different avenues for constructing consistent scenarios for lepton and quark mixing patterns, radiative neutrino mass generation as well as dark matter stabilization. In this talk I will show how these symmetries can be derived from the spontaneous breaking of the Abelian U(1) factors contained in the global flavor symmetry transformations of the gauge invariant kinetic Lagrangian. I will show how this idea can be implemented in scenarios with right-handed neutrinos.

Scopri di più »## Status of SuperKEKB Project: Accelerator Design and Construction Progress

The SuperKEKB project is a positron-electron collider built to explore new phenomena in particle physics. The physics program of the next B- factory delivering ultra high statistics is almost independent of, and/or complementary to, the high energy experiments at the LHC. The target luminosity is 8×10^35 cm^-2s^-1, which is 40 times the performance of the previous KEKB accelerator, which has been operated during 11 years until 2010. The consideration of SuperKEKB began in 2001. The strategy for the luminosity upgrade was a high-current scheme in the early stage. However,difficulties such as a bunch lengthening due to coherent synchrotron radiation and the need for a huge reinforcement of the RF system were encountered. As a result, in 2009 we have changed the strategy from the previous high-current to a novel “nano-beam” scheme. The nano-beam scheme was first proposed by P. Raimondi in Italy. Here the collision of low emittance beams under a large crossing angle allows squeezing the beta function at IP to values much smaller than the bunch length. Consequently, the 40 times higher target luminosity can be achieved with only twice the beam current of KEKB. The commissioning of SuperKEKB will start in early next year. In this seminar the latest upgrade schedule and the recent progress of the accelerator construction will be presented.

Scopri di più »